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Within the prospect of quantifying the geometrical dissimilarity of molecular models on 
the basis of a therrnodynamical formalism, the algebra of stereogenic pairing equilibria is 
reviewed and applied to molecular geometry: developing Rassat's proposition, an "interaction 
energy" of two figures F and F / is taken as proportional to d2(F, F/), where d~/denotes the 
Hausdorff distance. If G is a group of rotations in En, the geometrical version of the general 
equation (E) of the "chemical algebra" defines a distance extension Dp(F, F I) of dn(F,F~), 
which is independent of the orientations of F and F I, and where the coefficient p is interpreted 
as the reciprocal of a "temperature-like" parameter: p c( lIT. At 0 K (p = oe), no formal 
entropy contributes to the definition of the uniform distance Doo. At oo K Co = 0), the discrimi- 
nation between homo- and hetero-pairing of figures by the harmonic distance Do is averaged 
over orientation states. Temperature-dependent chirality measures c e are derived from Dp, and 
coo is analogous to Mislow's chirality measure. I fT and aT are normalized enantiomorphic tri- 
angles with coincident centroids in E2, cp(T) = Dp(T, crT) is calculated for p = 0 and p = oo, 
and discussed for 0 < p < oe. Finally, the Hausdorffinteraction model is putatively related to 
energy profiles versus dihedral angle in meso- and dl-molecules. 

1. I n t r o d u c t i o n  

In  cu r r en t  mo lecu l a r  representa t ions ,  a geomet r i ca l  ske le ton  is f irst  d rawn ,  
labe l led  by  re levan t  l igand pa r ame te r s  ( a tomic  orbi tals ,  force  field p a r a m e t e r s ,  
a t o m i c  charges ,  etc.)  and  then  a l lowed to  wa rp  m o r e  or  less a cco rd ing  to  the t em-  
pe ra tu re .  These  th ree  steps rely respect ively  on  the concep t s  o f  geometry ,  energy  

a n d  entropy  (fig. 1) [1]. Wi th in  the f r a m e w o r k  o f  this " m o l e c u l a r  a x i o m a t i c s " ,  the 
u l t ima te  l ink be tween  the s imilar i ty  concep t  and  the pa i r ing  p h e n o m e n o n  .would 
s u p p o r t  the re levance  o f  a s imilar i ty  measu re  based  on  the m a t h e m a t i c a l  f o r m a l i s m  
o f  the  t h e r m o d y n a m i c a l  analysis  o f  pa i r ing  equil ibria.  The  " a l g e b r a  o f  s t e reogen ic  
equ i l i b r i a "  and  the " chemica l  a lgeb ra"  (see below) a f fo rd  poss ible  s imi lar i ty  meas -  
ures  o f  two sets o f  a tomic  energy  pa r ame te r s  m a p p i n g  ident ica l  geomet r i ca l  skele- 
tons.  This  p a p e r  deals wi th  the c o m p l e m e n t a r y  s imi lar i ty  measu re  o f  two  
geomet r i e s  m a p p e d  wi th  ident ical  (unspecific)  pa rame te r s .  An  emphas i s  will be  
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laid on chirality, which is the underlying concept of important technical and intel- 
lectual challenges in modern chemistry [2]. 

2. Summary  of  the algebra of  stereogeuic pairing equilibria 

The shift of a pairing equilibrium between chemical species represented by Ul 
and U 2, 

2 u l / u 2  ~ Ul /Ul  + U2/U2 , 

where a slash bar (/) represents some interaction, is given by the constant 

g • [Ul/Ul] [u2/u2] 

[u /u212 ' 

where [ui/uj] denotes the concentration of the paired species ui/uj [3]. Owing to 
their chemical and biochemical importance, complex association equilibria 
P + Q ~ P/Q have given rise to many analytical treatments [4]. In another spirit, 
the former pairing equilibria lend themselves to an axiomatic algebraic treatment 
as well. The latter has been formulated on the basis of three hypotheses [3]: 
(1) Skeleton symmetrization: skeletons of interacting molecules are identically sym- 

metrized in a realistic manner. 
(2) Skeleton overlap pairing: the geometry of the paired species is a tight two-skele- 

ton juxtaposition wherein the skeletons are parallel. 
(3) Scalar product form of the ligand interactions: only one kind of pairwise ligand 

interaction occurs, and the corresponding energy is proportional to the scalar 
product of two n-vectors of real or vector ligand parameters assigned to n skele- 
tal sites numbered 1,... ,  n (e.g. four vertice of a regular tetrahedron, n = 4). 

U 1 and u2 are identified with vectors ul = (Al(ul),...,/~n(Ul)) and U2 ~--- (/~1 (U2), 
. . . ,  An(U2)), where A: k ~ Ak is some kind ofligand parameter (charge, polarizabil- 
ity, dipole moment, orbital, etc.) which is valued at each skeletal site k of a given 
molecule. A may also be a phenomenological parameter without a direct physical 
meaning, but fitting experimental K values. In the same spirit, scalar ligand param- 
eters have been used by Ugi and Ruch in the stereochemical analogy model [5]. 

The relevance of these hypotheses has been previously discussed [3]. Considering 
the pairing stereogenicity resulting from the symmetry of the skeleton as an "entro- 
pic contribution", the pairing equilibrium constant is expressed by 

(~'~expl--a(gul [-Ul).] E K = \gEG rqkT J /  

gsa rqkT J 
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wherein ~ (gui[ uj) is the interaction energy in the pair gui/uj: (. I ") denotes a scalar 
product (e.g. a bracket); g is a symmetry operation belonging to the point-group 
G of the skeleton and defining the relative orientation of ui and uj in one "stereoi- 
somer" of the pair ui/uj; a and q are fixed parameters; r is the (short) distance 
between the paired species [6]. K can be studied as an abstract mathematical object 
called "pairing product" [7]. Since sufficiently stable pairs are worth considering, 
the study focuses on attractive-type interactions, i.e. a < 0. The present model is 
therefore not allowed for the treatment of electrostatic interactions: this state of 
affairs has been already discussed [3]. Under this condition, the following proper- 
ties have not been disproved by any particular calculation performed so far: 
(a) K >~ 1 (homopairing is favoured). 
(b) K = 1 (homo- and hetero-pairing are equal) if and only if ul and u2 are chemi- 

cally equivalent, i.e. iful = g0u2 for some skeletal symmetry operationg0. 
If the symmetry of the skeleton acts by only one (e.g. Cl) or two (e.g. C2) permu- 

tations of the ligand sites, these properties have been proven regardless of the nat- 
ure (real number or vector) and the values of the ligand parameters. They have been 
discussed for carbene dimerization equilibria, equilibrating Diels-Alder reactions 
and equilibrating cyclopropanation reactions, where the pairing stereogenicity cor- 
responds to a cis/trans isomerism [3]. 

The model also addresses the following question: if u and v are enantiomers 
(v = cru, where cr is a mirror, an inversion or an improper rotation), is the homo- 
chiral association (RR) or (SS) more stable than the heterochiral one (RS)? In this 
context, properties (a) and (b) have been proven to be satisfied by K(u, cru) for sev- 
eral skeletal symmetries [8]. For 3-D skeletons with a minimum number of sites 
positioned according to a Ci, Cs, C2h, C2v, C3v, D2h, 84, D3h, o r  T d symmetry, homo- 
chiral pairings are found to be more favoured than the hetero-chiral ones, regard- 
less of the nature (real number or vector) of the ligand parameter. The same 
statement is true for real ligand parameters if the skeletal symmetry is C4v o r  D4h .  

Moreover, these pairings occur in equal amounts only if the molecule is achiral. 
Setting the exponential coefficient to p = - a / r q k T  > 0, the scalar product 

form of the interaction energy leads to an equivalent expression of K (by definition: 
Kp = K1/p): 

(g~Gexp[--PllgUl--Ulll2]) (g~Gexp[--Pl[gu2--U2[[2]) 

K = K ~  = 2 

\g~6(~-~exp [ - P  [ Igul -  uall2]) 

If G is a compact infinite group, the sum symbol ~ e c / I G I  is replaced by the inte- 
r, ,, 1 2rr gral symbol fa dg (e.g. if G = Coo, fa dg = ~ fo da) [9]. This expression is natu- 

rally extended to regular metric spaces by changing the Euclidean norm 
Ilgui - uj[ [ for more general distances d(gui, uj). Several general properties remain 
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valid but no theorem apraising the sign (property (a)) and the vanishing conditions 
(property (b)) of K - 1 is proven for non-Euclidean distances. The properties (a) 
and (b) would imply that K(u, v) is a consistent dissimilarity measure of u and v, 
and that K(u, ~ru) is a consistent chirality measure of u. The quantification of 
molecular dissimilarity is attracting a great deal of interest [10]: in this prospect, 
even if K(u, v) itself does not always fulfill the requirements (a) and (b), one seeks 
for a general K(u, v)-derived dissimilarity measure of u and v. And indeed, any 
"thermodynamical constant" K = K p could be associated to a real-valued positive 
function Dp(u, v) mapping algebraic models for pairs of skeletal analogs. An equa- 
tion involving Kp p has been devised, endowing the solution Dp with both a strong 
mathematical consistency and a thermochemical interpretation [11]. At the very 
outset, Dp should satisfy properties of a completely G-invariant distance, namely: 

(i) G-invariance requirements:Dp is completely G-invariant, i.e. the definition of 
Dp from Kp must preserve the complete G-invariance of Kp. Especially, for any 
operation g: Dp (gu, u) = 0. 

(ii) Extension requirements: 
(a) Dp is an extension of the distance d: if u0 is invariant to all the operations of G, 

then: Dp(u, u0) = d(u, u0). 
(b) Whenp --, 0, Dp tends to the explicit completely G-invariant distance Do: 

1 
D0(u, v) - [ dg ("harmonic distance"). 

L d(gu, v) 

(c) Whenp --. ee, Dp tends to the standard explicit completely G-invariant distance 
Dc~: 

D~(u,v)  = Inf d(gu, hv) ("uniform distance"). 
gEG,h6G 

(iii) Two out of three distance properties on El G [12]. 

(iv) Eventually, the triangular inequality: V ( u , v , w ) c E  3, Dp(u, w) <~Dp(u, v) 
+Dp (v, w). Formally, the design of ~ )  is also dictated by the concern of a thermo- 
chemical interpretation. Considering the equilibrium (E), 

2AB~__AA + BB, K -  [BB][AA] (E) 
[A ]2 ' 

each observable species, say AB, is a set of molecular states {Ai, Bj}. Now, the equi- 
librium is formally regarded as a set of "elemental equilibria" between states of 
the involved paired species: 
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(AiBI d- AkBj ~ ) AiBj -{- AkBl "~ AiAk q- BjBI : Kij,kl. 

The search for a quantity D allowing the equilibrium (E) to be defined as a "super- 
position" of these elemental equilibria, is undertaken from the equation 

[ AG° 1 1 (N: normalizing factor) K = exp - ~ = ~ [g/j,k/lD 2/aij:a 
N ij,k,t 

= N ij~.,k,texp[--k-~ {E(AiAk) + E ( B j B t ) - E ( A i B j ) - E ( A k B t ) } ~ I .  

The Ko.kfS express the relative abundances of AiAk, BjBt, AiBj, and AkBt in the 
whole equilibrium (E) characterized by DE. DE is an "energy" defined with respect 
to the lowest energy state on one side of the equilibrium, say the right-hand side 
A A + B B ,  and takes into account the competitive cross-pairing process: 
AiBt + AkBj~--AiBj + AkBI. Coefficients aij,kt are thus required to balance the 
Ko.kfs in K. They are defined by 

aij,kl = ( ailakj )1/2 

with aij = Eo(AA) + Eo(BB) - 2E(AiBt) and ak] = Eo(AA)+ Eo(BB)- 2E(AkBj), 
where Eo (AA) and Eo (BB) denote the ground states of the homo-pairs. 

Although D is related to the standard free energy of the equilibrium, no clear 
macroscopical interpretation is claimed: D E is a "mean cohesion energy", averaged 
over molecular states, of a species AB with respect to homo-pairing products AA 
and BB. These definitions are applied to pairing equilibria of skeletal analogs repre- 
sented by vectors u and v: 

2u/v ~ u/u + v/v. 

The states (u/v)0., (u/v)k/, (u/u)~, (v/v)fl correspond to "stereoisomers" of obser- 
vable pairs AB = u/v, AA = u/u,  BB = v/v. Assuming that the energy of paired 
species is a function ofligand parameter vectors, the thermodynamic equation of D 
takes an algebraic form. A theorem has been stated for Euclidean spaces of ligand 
parameters [11], and the formulation is hereby generalized for any metric space. 

T H E O R E M  

Let G be a finite or compact group acting on a metric space (E, d) and preserving 
the distance (V(u, v) E E 2, Vg E G, d(gu, gv) = d(u, v)). Forp  > 0, let Kp be a dis- 
criminating pairing product (Kp >i 1 and Kp(u, v) = 1 if and only ifv = gu for some 
operation g of G). Consider the equation of an unknown function Dp: 
E x E--~ ]I~_: 

~u,v(Dp(u, v)) = [Kp(u, v)] p (E) 

with 
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Kff(u,v) = fGexpI--Pd2(gu'u)] dg fGexp[-2dE(gv, v)]dg 

(faexp[-2d2(gu, v)]dg) 2 

v) J ' 

where 

• Cg,h,k(u, v) = d2(gu' v) + d2(ku, by) - dE(gu, ~ )  - d2(v, hv) 
2d(gu, hv). d(ku, v) 

• Cm(u ,v )=  Max{ Cg,h,k(U, V); (g,h,k) E G 3} (~>1), 

* fur(P) is some "regular" function eventually depending on (u,v) satisfying 
fur(0) -- 0 andfuv(e~) = 1 and such thatp ~ ~ ' (PJ is  continuous. 

Then, (E) has a single solution Dp which fulfills the aforementioned requirements, 
except, perhaps, the triangular inequality (iv). If (E, d) is an Euclidean vector space, 
then 

(gu - hv I ku - v) = cos(gu - hv, ku - v) ~< Cm(u,v) = 1. 
Cg,h,k(U, v )  = I lgu  - -  h v l l - I 1 ~  - vi i  

In this case, the definition of Dp does not require the determination off~v(p). The 
occurrence off~v might not be necessary in a simpler extension of the Euclidean the- 
orem: but iffuv(P) is equated to zero or to one, then either requirement (iic) or 
requirement (iib) is no longer ensured (see comment in Appendix). 

It is henceforth emphasized that the discriminating condition on Kp is sufficient 
but might not be necessary. Beyond the axiomatic chemical interpretation, the 
Euclidean version of the theorem has been the starting point of abstract specula- 
tions constituting a so-called "chemical algebra" [7,11,13,16]. Although eq. (E) has 
been actually devised from physico-chemical considerations, its resolution for any 
value o fp  is also challenging from a pure mathematical point of view. In simple 
cases only, the explicit solution could be obtained, allowing for a computational 
verification of the triangular inequality. At the very outset, the triangular inequal- 
ity requirement (iv) may appear somewhat excessive and not directly necessary 
for the purpose of quantification of dissimilarity. However, it enhances the mathe- 
matical interest of the equation. In addition, this pure mathematical difficulty is 
worth mentioning for it suggests a differential (or local) resolution: a new metric 
da 2 = D2(u, u + du) is thereby defined between infinitely close skeletal analogs. 
The integral distance associated to do ~ is different from Dp, but it surely satisfies 
the triangular inequality: this naturally raises the question for Dp itself. An integral 
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of da  along a "shortest  t ransformation pathway" is interpreted as a "kinetic dis- 
tance", whereas Dp itself is termed as the " thermodynamic distance" [13]. 

The metric space (E, d) is a homogeneous set of  models for a molecular property 
described by a ligand parameter, and Dp(u,v) quantifies the "dissimilarity" 
between two models u and v depending on the " temperature",  that is, more exactly, 
on the exponential coefficient p. In connection with recent investigations on the 
similarity of  molecular shapes [14], the theorem is now applied when the described 
molecular property is the geometry, in particular when the molecules are enantio- 
mers (v = au). 

3. Geomet r i ca l  version o f  eq. ~ )  

The bounded figures in the natural space En ~ IR n constitute a metric space for 
the Hausdorffdis tance dH: (E, d) = (B(I~"), dH). In what follows, the vector nota- 
tions u, v , . . .  are changed to more standard notations in regular metric spaces. I f  
F and F '  are two figures in l i  ~, and if 6(M, F) denotes the distance from a point M 
to F: 

dH(F, F') = Max{SupMeF6(M , F'); SUPM, eF,6(M' , F )} .  

Ifl~ n is considered as a vector space (i.e. if the figures are bound to have coincident 
centroids), the rotation group ofI~ n or the orthogonal group (rotations + improper 
rotations) of  N n (G) naturally acts on B(N ~) and preserves the Hausdorff  distance. 
Whatever is the sign of Kp - 1, eq. (E) can be written down: its eventual solution 
Dp(F, F/) would quantify the dissimilarity between F and Fq The geometrical ver- 
sion of the theorem can be formally interpreted in terms of a "skeleton-ligand 
parameter"  model: a figure F is fully defined by an infinite "skeleton",  the whole 
space Ii n, and by a "ligand parameter" A which is evaluated at each point (or skele- 
tal site) M by: AM = 1 as soon as M belongs to F, and A~ = 0 otherwise (A is the 
membership function of F). This formulation exhibits a further analogy with the 
treatment of molecules, namely: G still acts by permutat ion of skeletal sites in F 
[15]. It is to be dwelt on the fact that G is not  the symmetry group of the figure in the 
usual sense, but it is the symmetry group of its skeleton: the notat ion F rigorously 
refers to the figure in the usual sense (e.g. a set of vertices)plus its support  (the skele- 
ton Rn). 

For  p = 0 or oe, the solution of (E) is a distance between figures regardless of  
their relative orientation. The harmonic distance Do and the uniform distance Doo 
quantify differences in both shape and size: they are invariant to rotations but not 
to similarities (homothets). Therefore, they do not merely address symmetry dif- 
ferences. However, inside a family of figures having the same size (i.e. the same 
diameter A(F)), Dp summarizes the dissimilarity in symmetry. Nonetheless, since 
the symmetry o f F  is characterized by all the symmetry operations remaining in F,  
namely a point-group, a complete continuous description of symmetry cannot be 
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reduced to a single number (but it can be summarized by one number). I fg  is a rota- 
tion of N n, 

[ dH(gF, 
#F(g) = exp v~  ] 

is a measure of the remaining symmetry of type "g" in F [35]. #F can be regarded 
as a membership function of a "fuzzy subgroup" [16a], where the fuzzy subgroup 
structure is a continuous extension of the abstract group structure without refer- 
ence to any geometrical representation, and is connected with Mezey's and 
Maruani 's concept of"syntopy groups" [16b]. 

Chirality is a non-existence symmetry property concerning a single type of 
operation (i, or, S~), and, according to chemists' experience, the "chirality level" of 
a chemical species is empirically estimated by the single value of its specific optical 
rotation: it is therefore intuitive that "continuous chirality" is well measured by 
one number. The ability of Dp to quantify chirality is now examined. 

4. Tempera ture -dependent  chirality m e a s u r e s  

Numerous efforts have focussed on the quantification of chirality [17]. Mislow 
and co-workers [18,19], gave a general definition for a consistent "chirality meas- 
ure": it is a real-valued function X mapping a set of objects (molecule models), 
satisfying: 
(I) X is continuous. 
(II) X = 0 if and only if the object is achiral. 
(III) X is similarity-invariant, i.e. X only depends on the shape of the objects. 
This can be refined by adding one requirement, which is satisfied by the Hausdorff  
chirality measures [18]: 
(IV) X is derived from a distance between enantiomorphic objects [20], and thus is 

a particular case of a more general dissimilarity measure between oriented 
objects. This requirement meets the mathematical requirement of the triangu- 
lar inequality (iv) which was a priori introduced as an open perspective of the 
theorem. This requirement is also fulfilled by Avnir's Continuous Chirality 
Measure [ 17b]. 

The statement that "to achieve chirality, it is not sufficient to assign different labels 
to parts of an achiral object" [21] is opposite to the definition ofa  "chirality index" 
X of a molecular representation by a ligand parameter function mapping an achiral 
skeleton [8]. This discrepancy has to be discussed. Chirality is not understood as a 
universal property: it depends on the space where the object is allowed to move. 
Reviewing a well-known example [22], a non-isoceles triangle ("scalene") is chiral 
in the plane and is achiral in the 3-D space. In a broader acceptation, abstract "chir- 
ality" is ultimately defined with respect to a group H acting on a metric space E 
and with respect to a subgroup G of index 2: a member of E ("object") is said to be 
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"chiral" if any operation of H-G transforms the object differently from all the 
operations of G. If the object is a figure of JR 2 or 1~ 3 (i.e. a member of/3(~")), and if 
the natural representation of the displacement group in 1~" (rotations + transla- 
tions) is considered, this definition meets the classical acceptation which may be 
called "geometric chirality". However, in order to keep a link with current molec- 
ular representations by atoms or bonds assigned to the sites of a skeleton, the 
extended definition is worth retaining. 

The constant of a pairing equilibrium between enantiomorphic figures is defined 
by assuming that the interaction energy is of attractive-type and varies as the 
squared Hausdorff distance between the figures [18,19,23]. The relative position 
and orientation of a figure F with respect to its enantiomorph crF is characterized 
by a displacement g: 

e(gF/~rF) = -ad2(gF,~rF)/2r q (a < 0). 

It should be stressed that dH does not represent the spatial distance between the cen- 
troids to the objects. The statement that e varies as the square of dH follows heuristi- 
cally from the third hypothesis (scalar product form of the ligand interactions) 
which was recognized to be fruitful in the algebraic treatment of pairing equilibria 
[3]. Thus, the expression for e results from the current mathematical process con- 
sisting in extending a formulation by generalization of the hypotheses: the space of 
geometrical figures is endowed with the Hausdorff distance in the same way as the 
space of ligand parameter vectors was endowed with the Euclidean distance (or, 
equivalently, with the corresponding scalar product). The early interpretation of 
the process (molecular interaction), is now more concealed, but it supports the 
ability of the model to treat the related problem of the measure of geometrical 
chirality. 

In Rassat's and Mislow's approache, g would represent any rotation-translation 
in I~" [18,23]. However, the translation group is not compact and is not endowed 
with a Haar  measure allowing for the definition of the sums " f c . . .  dg" occurring in 
eq. (E) [9]. Therefore, the possible displacements have to be restricted to the com- 
pact group of rotations in ~": the common center of the rotations in II~ 2 (or the inter- 
section of their axes in ~3) and the centroid of~rF coincide with the centroid ofF.  

The theorem claims that Dp is a completely G-invariant distance in the borderline 
cases p = oo and p = 0, even for non-Euclidean distances such as dH. This feature 
is illustrated by the search for the most chiral triangle at the corresponding "extre- 
mal temperatures". The ability of 0E) to produce a Dp-derived chirality measure 
at "finite temperature" (0 < p < oo) will then be shortly discussed. Two-dimen- 
sional chirality has long been propounded as a simple illustration of three-dimen- 
sional chirality [22]. This concept directly addresses to two-dimensional chemistry 
[24], but also to three-dimensional stereochemistry [25], in particular to the prochir- 
ality notion [26]. Another possible application will be suggested in the last section. 
The extended theorem is now used to propose and discuss the notion of "tempera- 
ture-dependent chirality measure" in two-dimensional space, where calculations 
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are much  easier than in three-dimensional space. Following a well-admitted pro- 
cess, the chirality of  simplexes in ]t;t 2 (triangles T) is first investigated [17b, 18]. All 
the principles which will be set out remain valid for simplexes in II~ 3 ( tetrahedrons)  
[27]. The term "simplex of  11~ 2'' would have been actually more  precise than the 
term "tr iangle":  the triangles being now considered are reduced to the subdimen- 
sional sets of  their vertice (d(T) = 0) [28]. The same principles could be applied to 
triangles defined by subdimensional sets of  three edges (d(T) = 1) or by equi- 
dimensional  tr iangular surfaces (d(T) = 3), and the resulting values of  Dp(T, c~T) 
would be different for each definition o f T  and their enant iomorphs crT. 

4.1. MOST "UNIFORMLY CHIRAL" TRIANGLE (T = 0 K, p = c~) 

Let T denote a triangle (A, B, C), and crT its enant iomorph.  The calculat ion of  
Do~(T, crT) does not  involve dn(gT ,  T), but only dn(gT ,  c~T) where g stands for 
rotat ions about  the centroid O o f T  and where o- is the reflection across the line OA 
(fig. 2): 

D (T, = Inf dH(gT, 
gEG 

This quanti ty  does not  have to depend on the initial orientation of  T (Do~ is com- 
pletely G-invariant). However,  a consistent geometrical chirality measure  also 
requires to be similarity-invariant [18]: it must  not  depend on the size, but  on the 
shape of  the figure only. Therefore, T has to be normalized by a homothe t  of  center  
O to be a similar triangle with a unit diameter. In other words, the uni form chirality 
measure  of  a triangle T is defined by 

A A 
• ~ g  

csg~ ~ ,  _* 6gB 

Fig. 2. The "interaction entropy" of figures with coincident centroids is generated by their relative 
orientation in the plane E 2, characterized by a rotation g. This is exemplified for two identical triangles 

(left) and for two enantiomorphic ones which interconvert through a symmetry axis cr (right). 
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Doo(T, aT) 
coo(T) -- A(T)  ' 

where A(T)  is the length of  the greatest edge ofT.  
N 2 is identified with the complex plane and a set of  representative triangles 

T = (A, B, C) with a centroid 0 is produced by setting rA = OA = 1 and by varying 
only two parameters:  

• rb = OB from 0 to 1. 

• OB = A - O - B  angle, from 0 to 120 ° (or more precisely to cos -I ( - r s / 2 )  >/90°). 

The method is detailed in Appendix. The 3-D plot of  coo(T) against 0B and rs 
(fig. 3) displays a supremum coo (Too)max = 0.231 attained for the most  chiral trian- 
gle for this measure, namely: 0s = 52 °, rB = 0.46 (the corresponding diameter  
being A = 2.31 (2)). In terms of  internal angles, the shape of  the most  chiral trian- 
gle, denoted T~ ,  is defined by a ~ 35.7 °,/3 ~ 128.6 °, 3' ~ 15.7 ° (fig. 5). The smallest 
Hausdor f f  distance (namely, 0.534) is at tained for a rotat ion g --- 175 °. Never the-  
less, g = 31 ° and g = 52 ° correspond also to very small Hausdor f f  distances (0.547 
and 0.540 respectively): as for Mislow's m e a s u r e f  (or H) involving translations, 
three configurations produce about  the same optimal overlap (within the limits of  
calculation errors) [18]. The six-point figure defined by any union of  enantio- 
morphic  triangles with coincident centroids is always achiral (gcr is a symmetry  axis 
just as cr itself): this is a trivial version of Mislow's conjecture claiming that  the 

c(T) = f ( r ~  

0.25" 

o O:; 
0.1 

0"05 o 

r B 

Fig. 3. Variation of the uniform chirality measure Coo (T) ("0 K"). The variable parameters defining a 
complete set of representative triangles (A, B, C) are: rA = 1, 0 ~< rs ~< 1, 0 ~< 0B ~< cos-1 (_rR/2) ~< 120 °. 

The bottom borders in the surface (rm 0B) correspond to achiral triangles. 
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c0(T ) = f ( r ~ 0 B ) ~ / " I ~  

OA" 

0.~" 
0.5" 

0.~5" 

0,15' 
01' 
0.05' 

r B ,~'~ 

Fig. 4. Variation of the harmonic chirality measure c0(T) ("infinite temperature"). The variable 
parameters defining a complete set of representative triangles (A, B, C) are: rA -- 1, 0~rs~< 1, 
0~<0s~< cos- l ( - rs /2)~< 120 °. The bottom borders in the surface (rs, 0s) correspond to achiral 

triangles. 

union of  an object and its mirror image is achiral under conditions of optimal over- 
lap, even if the freedom degree of translations is allowed [18,19b]. 

Let us remind that considering translations of T with respect to crT, the "most  
chiral triangle is defined by a ~ 21.5 °,/3 ~ 114.3 °, 7 ~ 44.2 ° and the corresponding 
Hausdorff  measure equals f - - 0 . 1 9 6  [18]: these values are quite close to those 
obtained by considering only rotations. However, 0.196 < coo(Too)max = 0.231, as 
expected. The measure involving translations is naturally finer than coo (two trian- 
gles having the same non-zero coo value may be chirally ranked by different f 
values). Nonetheless, coo is completely consistent as a chirality measure and is more 
rapidely calculated: the sole variable "rotat ion angle" has to be swept, w h e r e a s f  
requires the sweep of three independent variables, one for rotations and two for 
translations. 

C 
% 

B 

Fig. 5. The most harmonically chiral triangles To (o~ K: rA = OA = 1, rs = 0.53, 0s = 39°; 
co(T0) = 0.392), and the most uniformly chiral triangle Too (0 K: rA = OA = 1, rs = 0.46, Os = 52°; 

coo(Too) = 0.231). 
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4.2. M O S T  " H A R M O N I C A L L Y  C H I R A L "  T R I A N G L E  (T  = oo K, p = 0) 

Again, the calculation of D0(T, crT) does not involve the values dH(gT, T), but 
only the values dLr (gT, crT). Indeed, 

1 

o 0 :  T / 

As for p = oe, the chirality measure "at infinite temperature" must be not only 
rotation-invariant, but also similarity-invariant. The harmonic chirality measure 
ofT is therefore defined by 

Do(T, crT) 
co(T)-- A(T) 

The 3-D plot of co(T) against 0B and rB (fig. 4) displays a supremum 
co(To)max---0.392 attained for the most chiral triangle To at cx~ K, namely: 
0B = 39 °, rB = 0.53 (with A = 2.43(4)). In term of internal angles, the shape of To is 
defined by: a ~ 37.4 °, /3 ~ 130.4 °, 3' --~ 12.2°, and resembles the shape of Too 
(fig. 5). The plot surface is now very flat except near achiral triangles where the 
slope is very steep: the level ofchirality discrimination between two chiral triangles 
is much weaker"at  high temperature" than at 0 K [29], and the level of chirality dis- 
crimination between a sufficiently chiral triangle and an achiral triangle becomes 
quasi-discrete (--* 0-1 measure), though still continuous [30]. No particular overlap 
is here distinguished: the overlap entropy was zero for p = oe (0 K!) and is maxi- 
mum forp = 0 (c~ K). since co and coo are continuously connected through eq. (E), 
they can be compared. It can be demonstrated that: c0/> coo: any triangle is "more 
chiral at infinite temperature than at 0 K". However, such a statement comparing 
the chirality "at high and low temperatures" is not obvious for "finite tempera- 
tures". 

4.3. C H I R A L I T Y  M E A S U R E  " A T  F I N I T E  T E M P E R A T U R E "  (0 < p < oo) 

For finitep values, the search for Dp requires the calculation ofKp(u, ~ru) first: 
2 

 p,(u /2exp2 
For many Euclidean distances, it has been shown that: Kp(u, cm)~>l and 
Kp(u, all) = 1 only if u is achiral [8]. Therefore, Kp(u, ou) (or the corresponding 
chirality index 1/> Xp (u) >i 0) [31] is a chirality measure just as Dp (u, o-u). It is now 
established that for non-Euclidean distances such as dz-I, Kp(F, crF) may be smaller 
than 1 and may equal 1 even i fF  is chiral! Thus, Kp(F, crF) does not give a chirality 
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measure, but the corresponding distance extension Dp(F, c~F) is anticipated to 
give one (if the solution Dp is not univocal, one determination has to be selected by 
a requirement of continuity). 

Kp is not similarity-invariant: if A is a positive number, AT is similar to T, but 
Kp(AT, crAT) # Kp(T, crT). However: dH(gAT, AT)=  Adg(gT, T) and dH(gAT, 
crAT) = AdH(gT, ~rT). Consequently: KP(AT, ~rAT) = K~P(T, aT). Since A may 
reach any positive value, the study of Kp(T, aT) against T c~an be restricted to, e.g., 
p = 2 [32]. Calculations have been performed, showing that inside the family of 
chiral non-similar representative triangles with rs<~rA = 1, K2(T, aT) is always 
very close to 1 (slightly smaller), namely, 0.989 < K2(T, aT)~< 1 (Appendix B). 
Since Koo (T, crT) is greater than 1 and is continuous, for any chiral triangle T, there 
exists a critical p value, denoted p(T), such that: Kp(T)(T,~rT)= 1, and for 
p > p(T), Kp(T, aT) > 1 [33]. A possible meaning forp(T), and more generally for 
p(F, F ~) (satisfying Kp(F,F, ) (F, F ~) = 1 even if the figures F and F ~ do not intercon- 
vert by any rotation) is commented on in Appendix. In fact, within calculation 
uncertainty, the range of values found for/(2 might be a deviation of a single value 
(K2 (T, crT) = 1) andp(T) = 2 would be identical inside the selected family of trian- 
gles. 

For the most uniformly chiral triangle Too (rA = 1, rs = 0.46, 0 = 52°), 
Kp(Too, crToo) has been calculated for 0 ~<p~<c~ and the variation is depicted in 
fig. 6: whenp decreases, Kp(Too, ~rToo) decreases from 1.330 . . . .  e (0"534"'') (indeed, 
Doo(Too, c~Too) = 0.534...), reaches the value 1 forp = p(Too) ~ 2, and is smaller 
than 1 for 0 ~<p < 2. The aspect of the plot for other triangles will be analogous to 
that given by Too. 

Suppose Dp(F,F') is the solution of (E). If p • 0, cx~, the ratio D2p(F,F')/ 
A(F)A(F ~) is not similarity-invariant (but it is as soon asp = 0 or cx~). However, it 
is easily shown that 

K 

1.3 

1.2- 

1.1 

0.9 
2 1'0 2'0 3'0 4'0 dO p 

Fig. 6. Plot ofKp (T, c~T) vs. p for T --- Too, the most uniformly chiral triangle (0 K). 
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VA > 0, D2(AF, AF') x2n2 {1~ lz"'~ r'fxF,~v'(P)--fv, v'(A2p) 

where Cm = Cm(F,F') = Cm(AF, AF') and fF,F, (p) are defined in the general for- 
mulation of the theorem. Since fF,F' (P) is not yet completely specified, it can be 
required that it fulfills the relationship: fxV,aF' (P) = fF.F' (A2P) (which is compatible 
with the conditions fF,F' (0) = 0 and fF,F, (O e) = 1: see comment in Appendix for a 
determination offF,F,(P)). Then, replacing p by p /A(F)A(F ' )  and taking F = T, 
F'  = crT, one gets a similarity-invariant p-continuous extension of the chirality 
measures co and coo [34]: 

Cp (T) = Dp/a2(T)(T, o-T) 
A(T) 

The study of Kp, Dp and Cp is obviously much more complicated for non-Euclidean 
distances than for Euclidean ones, but further investigations deserve to be under- 
taken. 

5. Chemical interpretation of  the Hausdorffinteraction between geometrical 
figures 

Many efforts have focussed on ranking molecular symmetry [35] or chirality 
[17,18]. The connection with the chemical challenge of ranking some type of reac- 
tivity inside a family of substrates is not evident. For example, are we allowed to 
anticipate that the asymmetric induction exerted by an asymmetric carbon exhibit- 
ing the "most chiral tetrahedral geometry" [19] is higher than that exerted by car- 
bons with any other tetrahedral geometry? As it is, even if the chirality transfer is 
recognized to result from differential steric interactions only, the geometry to be 
considered is not known a priori: the representative points may be the centers of 
mass of the substituents, those of the first atoms of the substituents, or any others. 
Furthermore, the answer requires the knowledge of the form of the interaction 
energy dictating the outcome of the reaction. This section aims at connecting some 
of the principles governing the design of the geometrical chirality measures cp 
with a model for chemical interactions. 

A substituted ethane molecule exists as a distribution of "rotamers" (figs. 1 
and 2). Suppose that the substituents at one carbon exert a phenomenological 
attractive or repulsive force on the substituent at the facing carbon. The general 
hypothesis of the algebra of stereogenic equilibria (a < 0), corresponds to the 
attractive situation which appears here very speculative but which is not impossible 
in principle (it could occur, for example, when all the substituents are sufficiently 
small and both donors and acceptors of hydrogen bonds: OH, SH, NHR,  NHCOR,  
.. .).  Although the case of a > 0 has not afforded a general algebraic theorem on 
Kp, the corresponding repulsive situation (steric strain between facing substituents) 
can be considered at this stage. 
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The sp 3 geometry is more or less distorted: consider the triangle T!  defined by 
the intersection of the three C 1 - R i  bonds with a plane perpendicular to the C1-C 2 
axis. An analogous triangle T2 is defined for the carbon C 2. Let r be the distance 
between the two planes. The rotation of the C~-C 2 bond brings about the rotation 
of T2 with respect to T1. It is reasonable to propose that the T1/gT2 interaction 
energy could vary as the square distance 

d 2 (g) = Max { SUpM ~ eT~ 52 (M1, gT2); SUpM 2 egT262 ( m2, T 1 ) }. 

Since the plane are parallel and r A apart, the Pythagore theorem yields 

d2(g) = r 2 + Max{SuPM~W~ 62(Mr 1 ,gT2); SUpM2egW262(M~, T1)}, 

where M~ is the projection of MI on the plane of T2 and M~ is the projection of 
M2 on the plane ofT1. Finally, 

d2(g) = r 2 + d2(Tl,gT~),  

where T~ is the projection of T2 on the plane of T1 (in what follows T~i is equated 
to Ti). In accordance with the prerequisites of the algebra of stereogenic pairing 
equilibria, the energy of any rotamer characterized by g would be 

e(g) = -a[r  2 + d2 (Tl,gT2)]/2r q 

(here a can assume both positive and negative values). For example, T2 may be 
identical to T1 (meso molecule RS) or enantiomorphic to T1 (dl molecule, RR or 
SS) (fig. 7). The rotational energy is a three-parameter function ofg  (a, r, q), even- 
tually suitable for a molecular mechanics force field. Given a molecule R1R2R3C- 
CR1R2R3, a triangle T = (A, B, C) is drawn, where A, B, C are the intersection 
points of the bond axes C-R1, C - R 2 ,  C - R 3  with some plane perpendicular to the 
C L C  2 axis. Suppose T = Too or T = To: the energy variation against the dihedral 
angle 0 = g is depicted in fig. 8 for the meso and d! isomers. This "energy" repre- 
sents geometrical information as the variation of Avnir's CCM in rotating ethane 
structures [ 17b]. 

R I r R 1 

g.--~ 1 

meso - isomer 

i I I  ID- I 

R~ r R~ 

R2 R~ 

dl -isomer 

Fig. 7. Rotamers of a substituted ethane molecule are putatively weighted by mean of the Hausdorff 
interaction E(gT, T') = -a i r  2 + d~(gT, T')]/2r q (a < 0 or > 0). This is exemplified for T' = T (left) 

and T' = ~rT (right). The observed projection of the associated triangles is shown in fig. 2. 
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Fig. 8. Energy profiles of "rotamers" in symmetrically (meso or dO substituted ethane molecules, 
where gO denotes the dihedral rotation angle in degrees. The geometrical model for the substituted 
methyl groups corresponds to the most harmonically chiral triangle (ToC-CT0, left) or to the most 
uniformly chiral triangle (T~ C-CTo~, right). The vertical axis represents energy: either e (attractive 

interaction, e.g. through hydrogen bonds), or -e (repulsive interaction, e.g. through steric strains). 

6. R e m a r k s  on  fig. 1 

In the preceeding section, the term " ro tamer"  is used for convenience, but  it 
usually refers to a kind o f " i somer"  and is strictly unfit with respect to the sense dis- 
cussed by Eliel [36]: the different relative orientations of  the two ends of  the mole- 
cules are not  independently observed and take place either as "states", if they are 
not located near a min imum with an energy barrier greater than kT, or, otherwise, 
as (proto-)isomers [35] of  one (residual) isomer [35] defined under given conditions 
of  observation (meso, dl, ...). In fig. 1, a molecule is defined by a structure lying at 
a min imum of  the global potential energy hypersurface and by a scatter of  states 
surrounding the central structure by less than AEM kcal tool -1 . AEM represents the 
stability scale, required by Eliel, in relation to given conditions of  observation or 
in relation to given criteria (e.g. AEM = kT) [35]. In the approach of  fig. 1, the defi- 
nition of  AEM and the temperature  determine the flexibility and the variability of  
the molecule, and thus its entropy. 

7. S u m m a r y  a n d  conc lus ion  

In the beginning, D e serves to describe dissimilarity in energy, and the definition 
has been extended to describe dissimilarity in geometry on the same basis. The com- 
mon  "skele ton"  of  geometrical figures is the whole space En, mapped  by different 
"geometr ical  ligand parameters":  AM = 1 if M belongs to the figure and AM ----- 0 
otherwise. Since a temperature  parameter  occurs in the "chemical  version" of  
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eq. (E), the geometrical dissimilarity measure derived from the same equation is 
also modulated by a "temperature notion". For example, the entropy vanishes at 
0 K (p = oe) and only one overlap of"interacting figures" (that giving the shortest 
Hausdorff distance) takes place in the uniform distance Doo. As an application, 
the equation suggests the definition of "temperature-dependent chirality meas- 
ures", and uniform (0 K), harmonic (oo K) and intermediate (0 < T < oe) planar 
chirality measures of triangles have been studied. The same process could be 
applied to the space chirality measure of tetrahedrons (basic geometry in organic 
chemistry [37]). Finally, dissimilarity measures based on repulsive-type interac- 
tions (p < 0) might be studied, and applications of the Hausdorff distance model 
might be sought in conformational analysis. 

Appendix  A 

CALCULATION OF dH(gT, aT) 

Let T be a triangle with a centroid O (see fig. 9). The sum of three angles A - O -  

B,  B - O - C ,  C - O - A  is equal to 360 °, and the smallest one, say A - O - B ,  is less than 
120 °. Let O A  be greater than OB,  and consider the O-homethetic triangle with 
O A  = rA = 1. Then, O B  = rs  ~< 1. In the complex plane marked by the O A  axis as 
the O x  axis, the polar coordinates of the triangle vertice define the affixes 
ZA =- rA ~ 1,ZB ----- rBeiOs,zc = rc  eiOc. 

y 

B (z13= r B ei0B) 

. ,d0  / 
* "  O 

. . . . . . ~ 2 C  . . . . . . . . . . .  "~"- A(ZA=I ) 

C (z¢= r c ei0¢) 

Fig. 9. 
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Since 0 is the centroid of  (ABC) ,  zc  is completely determined by zs, namely by 

zA + zB + zc  = 0 ,  

i.e., 

o r  

i.e., 

rA + rB eiOs + r c  eiOc = 0 ,  

r c  c o s  Oc = --rA -- rB COS 0 B 

rc sin Oc = - rB  sin Os , 

4 = r2 + 4 + 2rArBcosOB, 

rB sin 0B 
tan Oc = rA + rB cos 0B 

Since - 9 0  ° ~ tan - 1 0 c  <. 90 ° 

if tan Oc > 0, then Oc = 180 + t an -10c  (see scheme).  

if t a n 0 c  > 0, then Oc = tan -10c  

The distance between two points M and N is given by 

d ( M , N )  =l ZM -- ZN [= ~/r 2 + rZu -- 2rMrNCOS(OM -- ON). 

I fg  is a rotat ion acting on a point M(zM = rMei°M), t h e n g M  is defined by 

zgm = rMe i(°M+g) 

and if cr denotes the reflexion across the OA axis, gc~M is defined by: 
ZgcrM = rMe  i(g-OM). 

A chiral triangles 
For  rA = 1, the achiral triangles obtained by varying rs ~< 1 and 0 ° < 0B < 120 ° cor- 
respond to rs = 0 or 1 (whatever is 0s) or to rc = rA = 1. The isoceles triangles 
are thus obta ined from the equation rs = - 2  cos 0s. When r~ runs f rom 0 to 1, the 
0s values of  the corresponding achiral triangles are smaller than 120 ° (but  close to 
120°). (See table 1.) In order to calculate Dp(T, aT) for any chiral triangle T, a 
Kale idagraph TM macro-program has been written on the basis of  the following col- 
umns and memories:  

Variable 
cO = g (from - 180 ° to +180 ° with 1 ° increment). 
Parameters 
m0 -- Oc (from 0 ° to 120 ° with a 10 ° increment or locally finer). 
m 1 = rs (from 0 to 1.0 with a 0.1 increment or locally finer). 
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T a b l e  1 
Ach i r a l  t r i ang les  w i th  rc  = r A = 1. 

167 

rB 0B = cos  -1 ( - r ~ / 2 )  rB 0B = cos  - l  ( - r B / 2 )  r/~ 0B = cos  -1 ( - r e / 2 )  

0 90 ° 0.4 101.54 ° 0.8 113.58 ° 
0.1 92.87 ° 0.5 104.48 ° 0.9 116.74 ° 
0.2 95.74 ° 0.6 107.46 ° 1.0 120 ° 

0.3 98.63 ° 0.7 110.49 ° 

Calculation auxiliaries for dH (gT, aT)  
m 2 = 0 c ,  m3 =rc, cl =d(gcrA, A), c2 =d(g~rA, B), c3 =d(gcrA, C), c5 
= d(gcrB, A), c6 = d(gcrB, B), c7 = d(gcrB, C), c9 = d(gcrC, A), c l0  = d(gcrC, B), 
cl 1 = d(gcrC, C), c4 = (cl, c2, c3) = 6(gcrA, T), c8 = Min(c5,  c6, c7) = 6(gcrB, T), 
c12 = Min(c9,  cl0,  cl 1) = 6(gcrC, T), c13 = Max(c4, c8, c9) = SupMeT6(gcrM, 
T), c l 4 = M i n ( c l ,  c5, c9), c 1 5 = M i n ( c 2 ,  c6, cl0),  c l 6 = M i n ( c 3 ,  c7, c l l ) ,  
c l 7 = M a x ( c l 4 ,  c15, c l 6 ) = S U p M e T 6 ( M ,  gcrT), c l g = c l 9 = M a x ( c l 3 ,  c17) 
= dH (gT, o-T). 

Using the shortcuts  c9 = c3, c5 = c2, and c10 = c7, a macro -p rograme  " R S  
(rA = 1)" is thus wri t ten for comput ing  dH(gT, crT) values on a 4Mo  Mac in tosh  
micro-computer .  The values of Doo(T, aT)  and D0(T, aT)  are then deduced,  and  
chirality measures  Cp (p = 0, c~) are obta ined by dividing Dp (T, aT)  by the d iameter  
o fT :  

A(T)  = Max{d(A,  B); d(B, C); d(C, A)}.  

Results  are displayed in table 2. 

A p p e n d i x  B 

C A L C U L A T I O N S  O F  K2(T,  aT)  = ( f c  e x p [ - d 2 ( g  T, T ) ] d g ) / ( f a  exp[ - d 2 ( g T ,  ~rT)]dg) 

Both the dH(gT, T) and dH(gcrT, T) values are now needed. In order  to compute  
dH(gT, T) values, a m a c r o - p r o g r a m m a  " R R &  SS (rA = 1)" has been written. 

Calculation auxiliaries for dH (gT, T) 
m2 = Oc, m3 = rc, cl = d(gA, A), c2 = d(gA, B), c3 = d(gA, C), c5 = d(gB, A), 
c6 = d(gB, B), c7 = d(gB, C), c9 = d(gC, A), c10 = d(gC, B), c l l  = d(gC, C), 
c4 = Min(c l ,  c2, c3) = 6(gA, T), c8 = Min(c5, c6, c7) = 6(gB, T), c12 = Min(c9,  
c l0 ,  c l l ) =  6(gC, T), c13 = Max(c4, c8, c9) = SUpM~T6(gM, T), c14 = Min(c l ,  
c5, c9), c15 = Min(c2, c6, cl0),  c16 = (c3, c7, c l l ) ,  c17 = Max(e l4 ,  c15, c16) 
= SupM~T6(M, gT), c18 = M a x ( c l 3 , c l 7 ) = d H ( g T ,  T). (cO is restricted to the 
interval [0% 180°]). The integrals fc  e x p [ - d 2 ( g  T, T)]dg and fc  e x p [ - d 2  (g CrT, T)]dg 
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O•s 0.0 0.1 0.2 0.3 0 . 4  0.5 0.6 0.7 0.8 0.9 1.0 

c~(T) = Doo(T, crT)/A(T) vs. T = (0m rs): 

0.00 ° 
10.0 ° 
20.0 ° 
30.0 ° 
40.0 ° 
50.0 ° 
60.0 ° 
70.0 ° 
80.0 ° 
90.0 ° 
1 O0 ° 
110 ° 
120 ° 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.0157 0.0269 0.0364 0.0436 0.0489 0.0524 0.0544 0.0562 0.0346 0.00 
0.00 0.0303 0.0534 0.0702 0.0842 0.0943 0.101 0.109 0.0723 0.0349 0.00 
0.00 0.0442 0.0792 0.106 0.126 0.142 0.154 0.114 0.0735 0.0355 0.00 
0.00 0.0579 0.104 0.140 0.167 0.189 0.161 0.116 0.0751 0.0364 0.00 
0.00 0.0616 0.117 0.168 0.209 0.213 0.165 0.120 0.0773 0.0375 0.00 
0.00 0.0487 0.0949 0.139 0.180 0.218 0.170 0.124 0.0801 0.0389 0.00 
0.00 0.0352 0.0721 0.108 0.144 0.180 0.177 0.129 0.0845 0.0412 0.00 
0.00 0.0206 0.0457 0.0739 0.105 0.135 0.165 0.137 0.0901 0.0442 0.00 
0.00 0.0052 0.0173 0.0362 0.0580 0.0842 0.113 0.143 0.0973 0.0480 0.00 
0.00 0.0123 0.0141 0.0071 0.0010 0.0283 0.0527 0.0792 0.106 0.0540 0.00 
0.00 0.0280 0.0446 0.0508 0.0476 0.0369 0.0203 0.0065 0.0306 0.0590 0.00 
0.00 0.0441 0.0760 0.0966 0.106 0.106 0.0991 0.0832 0.0607 0.0343 0.00 

c0(T) = Do(T, ~rT)/A(T) vs. T = (On, rn): 

0.000 ° 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
10.00 ° 0.000 0.2037 0.2448 0.2752 0.3000 0.3212 0.3335 0.3413 0.3431 0.3123 0.000 
20.00 ° 0.000 0.2215 0.2697 0.3060 0.3359 0.3605 0.3722 0.3710 0.3479 0.3133 0.000 
30.00 ° 0.000 0.2313 0.2842 0.3241 0.3560 0.3800 0.3871 0.3710 0.3483 0.3143 0.000 
40.00 ° 0.000 0.2363 0.2919 0.3336 0.3659 0.3881 0.3851 0.3700 0.3482 0.3145 0.000 
50.00 ° 0.000 0.2372 0.2940 0.3352 0.3677 0.3872 0.3814 0.3680 0.3474 0.3145 0.000 
60.00 ° 0.000 0.2341 0.2904 0.3320 0.3625 0.3784 0.3755 0.3643 0.3451 0.3129 0.000 
70.00 ° 0.000 0.2263 0.2806 0.3210 0.3506 0.3658 0.3664 0.3580 0.3408 0.3103 0.000 
80.00 ° 0.000 0.2115 0.2625 0.3013 0.3307 0.3474 0.3516 0.3473 0.3331 0.3047 0.000 
90.00 ° 0.000 0.1779 0.2272 0.2666 0.2977 0.3186 0.3280 0.3290 0.3196 0.2950 0.000 
92.87 ° 0.000 0.000 0.000 
95.74 ° 0.000 0.000 0.000 
98.63 ° 0.000 0.000 0.000 
100.00 ° 0.000 0.1976 0.2193 0.2054 0.2192 0.2622 0.2848 0.2958 0.2950 0.2773 0.000 
101.5 ° 0.000 0.000 0.000 
104.5 ° 0.000 0.000 0.000 
107.5 ° 0.000 0.000 0.000 
110.0 ° 0.000 0.2211 0.2635 0.2841 0.2874 0.2727 0.2413 0.1953 0.2399 0.2413 0.000 
110.5 ° 0.000 0.000 0.000 
113.6 ° 0.000 0.000 0.000 
116.7 ° 0.000 0.000 0.000 
120.0 ° 0.000 0.2339 0.2876 0.3204 0.3337 0.3266 0.3095 0.2840 0.2495 0.2017 0.000 

a r e  c a l c u l a t e d  a n d  d i v i d e d  by  e a c h  o t h e r  t o  a f f o r d  K 2 ( T ,  crT). S e t t i n g  IRR 

--  360 f c e x p [ - d 2 ( g T ,  T ) ] d g  a n d  IRs = 360 f a e x p [ - d 2 ( g T ,  crT)]dg, t h e  r e s u l t s  a r e  

l i s t e d  in  t a b l e s  3 - 5 .  T h e  e x p l o r a t i o n  o f n e g a t i v e p  v a l u e s  wi l l  be  d i s c u s s e d  l a t e r .  
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Table 3 

10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 ° 100 ° 110 ° 120 ° 

rs = 0.1: 
IRR/2 166,69 166,47 166,31 166,20 166,14 166,13 166,16 166,23 166,34 166,27 166,15 166,06 
IRS 334,91 334,86 334,71 334,51 334,26 334,06 333,91 333,81 333,75 333,74 333,77 333,86 

rs = 0.2: 
IRR/2 165,32 165,00 164,79 164,70 164,70 164,79 164,95 165,14 165,38 165,39 165,10 164,80 
IRS 331,52 331,52 331,41 331,27 331,10 331,03 331,01 331,02 331,02 330,99 330,91 330,77 

rB ---- 0.3: 
IRR/2 163,81 163,47 163,33 163,36 163,54 163,83 164,20 164,61 165,02 165,31 164,90 164,37 
/RS 328,73 328,83 328,91 329,02 329,20 329,55 329,94 330,32 330,57 330,67 330,54 330,11 

rB ---- 0.4: 
IRR/2 162,18 161,91 161,91 162,16 162,60 163,13 163,71 164,30 164,88 165,42 165,02 164,25 
/RS 325,58 325,83 326,21 326,71 327,46 328,39 329,34 330,14 330,68 330,90 330,79 330,32 

rs = 0.5: 
IRR/2 160,46 160,33 160,56 161,07 161,67 162,33 163,04 163,77 164,57 165,49 165,58 164,74 
IRS 322,14 322,64 323,44 324,42 325,72 327,32 328,86 330,16 331,03 331,56 331,96 331,89 

rs = 0.6: 
IRR/2 159,21 159,22 159,68 160,26 160,92 161,67 162,58 163,66 164,81 166,02 166,76 165,88 
IRS 319,86 320,62 321,60 323,01 324,70 326,56 328,53 330,51 332,11 333,21 333,88 333,81 

rB = 0.7: 
IRR/2 158,40 158,64 159,14 159,75 160,54 161,47 162,53 163,72 165,01 166,38 167,81 167,03 
IRS 318,21 319,08 320,26 321,78 323,54 325,55 327,77 330,17 332,56 334,46 335,58 335,67 

rB = 0.8: 
IRR/2 157,84 158,22 158,75 159,45 160,29 161,27 162,39 163,66 165,06 166,58 168,18 168,17 
IRS 316,80 317,70 318,93 320,43 322,21 324,29 326,65 329,29 332,15 334,98 336,99 337,40 

rs = 0.9: 
IRR/2 157,46 157,86 158,43 159,14 160,00 161,01 162,18 163,50 164,98 166,61 168,35 169,24 
/RS 315,50 316,37 317,54 319,02 320,78 322,86 325,25 327,98 331,04 334,37 337,65 338,94 

A p p e n d i x  C 

COMMENTS ON THE MEANING OF p(T)ANDfuv (p) 

The proof  of  the theorem has been given for Euclidean distances [11]. Al though 
no difficulty is met by extending the proof  to regular metric spaces, the extended 
formulat ion of  the theorem has to be examined, in particular with regard to the 
determinat ion of  fur(P). The following short discussion is obviously not  complete 
and is just devoted to explore some possibilities. 
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Table 4 
Kl (T, crT) = IRR/IRs VS. T = (Os, rB). 

~ B  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0 ° 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
10 0.9954 0.9973 0.9966 0.9963 0.9962 0.9955 0.9956 0.9965 0.9982 1.0000 
20 0.9943 0.9954 0.9943 0.9938 0.9938 0.9932 0.9943 0.9960 0.9980 1.0000 
30 0.9937 0.9945 0.9932 0.9927 0.9929 0.9930 0.9938 0.9955 0.9978 1.0000 
40 0.9937 0.9944 0.9930 0.9927 0.9930 0.9923 0.9930 0.9952 0.9977 1.0000 
50 0.9941 0.9949 0.9936 0.9931 0.9927 0.9912 0.9924 0.9949 0.9976 1.0000 
60 0.9946 0.9956 0.9943 0.9935 0.9919 0.9901 0.9920 0.9946 0.9974 1.0000 
70 0.9952 0.9966 0.9953 0.9942 0.9915 0.9898 0.9918 0.9943 0.9972 1.0000 
80 0.9960 0.9978 0.9967 0.9954 0.9920 0.9903 0.9917 0.9940 0.9970 1.0000 
90 0.9968 0.9992 0.9984 0.9972 0.9943 0.9925 0.9923 0.9939 0.9967 1.0000 
100 0.9964 0.9994 0.9998 0.9998 0.9983 0.9965 0.9949 0.9946 0.9966 1.0000 
110 0.9956 0.9979 0.9977 0.9977 0.9976 0.9989 1.000 0.9981 0.9972 1.0000 
120 0.9948 0.9964 0.9958 0.9945 0.9928 0.9938 0.9952 0.9968 0.9986 1.0000 

Since (B(IRn), dH) is not Euclidean, the factor 1/Cm(u,v) Av(p) is needed so that, 
for p--~ oe, the solution Dp tends to D~ as required in (iic). It is clear that 
Cm(u, v) ~> 1, and if Cm(U, V) ¢- 1 (if E is not Euclidean) eq. (E) depends o n f ( p )  
which is not a priori fully determined (the theorem only requires fuv(0) = 0 and 
fuv(Oe) = 1). At best, some specific fur(p) is expected to give a completely G-invar- 
iant distance extension Dp which would satisfy the triangular inequality. Although 
the triangular inequality has been verified in some particular cases of  Euclidean 
space, no general indication is yet in our possession. 

Evidently, fuv(P) must be non-dimensional: since the exponential coefficient 
itself is dimensional (p = - a / r q k T ) ,  a simple form for f~v(P) could be: 
fur(P) = ~p[k/[p _ p0[k with Po ¢- O. If this form is retained, let Po = p(u, v), where 
p(u, v) is defined by: Kp(u,v)(u, v) = 1 (if u is a triangle T in ]1~ 2 and v = aT: 

Table 5 
Kp (To~, ~rTo~) vs. p (> 0 or < 0) for T~  (rA = 1; rB = 0.46; OB = 52°). 

p<O K, p > 0  o K, 

-10.0 2.0656 0.9300 
-5.00 1.8932 0.8802 
-2.00 1.3401 0.8639 
-1.00 1.1255 0.8885 
-0.50 1.0511 0.9052 
-0.10 1.0085 0.9189 

0.01 0.9992 0.9222 
0.10 0.9923 0.9257 
0.50 0.9693 0.9395 
1.00 0.9577 0.9577 
2.00 0.9987 0.9993 
3.00 1.1431 1.0456 
5.00 1.8227 1.1276 

10.0 7.9378 1.2302 
20.0 155.268 1.2869 
30.0 2940.65 1.3050 
50.0 1026510 1.3189 
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p(u, v) = p(T)). Then, if Cm(u, v) > 1, C~(u, v) Av(p(u'v)) = +oo. Consequently, for 
p = p(u, v): ~u,v(X) = 1, and eq. (E) is degenerated to "1 = 1". The latter property 
might be considered as an additional consistency. However, this expression of 
fur(P) is completely consistent only if the variation of p0 =p(u ,  v) is compatible 
with the condition f:~u,:w(p) = f~,v(A2p) proposed for a similarity-invariant defini- 
tion of Cp (T). Under the assumption f~v (P) = [ P[k/[p _ P(U, v)1~, the latter condi- 
tion is equivalent to the condition 

p(~,u, •v) = ~2p(u, v).  

NOW, 

v/ /,(~,v) ~u, = 1 

(by definition ofp(u, v)). Then, (1/A2)p(u, v) can indeed be equated to p(Au,  Av). 
Yet the Euclidean structure is not necessary to ensure C~ = ( u , v ) =  1 [38]. 
However: 

PROPOSITION 

Let (E, d) be a metric space, let G be a group operating on E. Suppose that G pre- 
serves d. Then, for any points u and v in E and any operations g, h, k in G: 

Min(Cg,h,k(U, v); Ck,ha(u, v)) ~< 1. 

Eventually, Cg,h,k(U, v) or Ck,h,g(U, V) may be greater than 1 [39]. 

P r o o f  
Let (E, d) be a metric space. By using the triangular inequality, we get 

V(x, y, x', y') ~ E 4 , 

d2(x,y) + d2(x' ,y ') - d2(x, x') - d2(y,y ') = {d2(x,y) + d2(x' ,y) - d2(x, x')} 

+ { d 2 ( x l , y  t) -]- d2 (x / , y )  - d2(y, y t )}  - 2d2(x',y) 

<~ {2d(x,  y)d(x' ,  y)} + { 2 d ( x ' ,  y')d(x', y)} - 2d2(x ', y) 

<<. 2 d ( ¢ , y ) {  d (x ,y )  + d(x ' ,y ' )  - d(x',y)}. (i) 

By permuting x and x' 

g2(x,,y ) + g2(x,y,  ) _ g2(x ' ¢ )  _ g2(y,y,)~<2a(x' ,y ' )  

× {d(x,y ')  + d(x ' ,y )  - d(x' ,y ' )} 
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* I f d ( x , y )  + d O d , j  ) <~d(x~,y) + d ( x , y ' ) ,  (i) leads to 

d2(x,y) + d2(x ' ,  y ')  - d2(x, x j) - d 2 ( y , y  ') ~2d(x~,y)d(x,y') 

• Otherwise ,  i.e. i f d ( x ,  y) + d0d ,  y') >~ d(x' ,  y)  + d(x ,  y ') ,  then (ii) leads to 

d2 (x', y) + d 2 ( x , y  ') - d2(x,  x ~) - d 2 ( y , y  ') ~ 2 d ( x , y ) d ( x ~ , y ' )  . 

I f  the  g roup  G acts on  (E, d) and  preserves  the distance,  and  if  (g, h, k) E G 3, let: 
x = gu, y = v, x j = ku,  y~ = hv. The c o m b i n a t i o n  of  the a b o v e  inequali t ies  leads to 

Min(Cg,h,k(U, V); Ck,he(U, V)) ~< 1. [B 

Never the less ,  in connec t ion  with p roven  or  con jec tu red  inequali t ies  concern ing  
convex  bodies  [40], it cou ld  be  con jec tu red  that:  V(u ,v)  C (B(E2)) 2, V ( g , h , k )  
E G 3, 

2 k d~(v ,  hv) ~ 2d~(gu ,  hv)dH(ku ,  v) d211(gu, v) + d~(  u, hv) 2 u - d h ( g ,  - 

(at  least  when  u, v are convex  bodies).  I f  this was  true, then Cm(u, v) = 1, and  the 
s tudy  o f  Dp at finite t empera tu re  w o u l d  be  great ly  simplified,  w i thou t  resor t ing  to 

anyf~v(p) .  
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